Что такое штаммы вирусов, бактерий, микроорганизмов?

Болезни подстерегают человека, испытывают на прочность организм и вынуждают человечество постоянно искать новые и новые способы борьбы и методы защиты от них в будущем. Каждый человек болел простудными заболеваниями.

Что такое штамм?

В немецком языке слово «Stamm» означает род, ствол родового древа. Биологи называют штаммом чистую культуру какого-либо микроорганизма, либо культуру клеток определённого вида, изолированную и размноженную на специальной питательной среде.

Поскольку одноклеточные организмы размножаются обычным делением, то штамм сохраняет все наследственные признаки исходного микроорганизма, в том числе генетические. Выделенный штамм легко исследовать, описывать и классифицировать:

– по типу нуклеиновой кислоты, определяющей наследственные признаки у вирусных штаммов;

– по предпочтениям питательной среды и выделяемым в процессе жизнедеятельности продуктам;

– по форме и размерам создаваемых «бляшек» колоний;

– по уровню ферментообразования;

– по вирулентности и др.

Каждому исследованному штамму присваивается собственное название, и после публикации его описания этим названием пользуются во всём научном мире.

Врага нужно знать в лицо

Системы CRISPR-Cas являются уникальным примером адаптивного иммунитета бактерий. При проникновении в клетку ДНК фага специальные белки Cas встраивают фрагменты вирусной ДНК длиной 25—40 нуклеотидов в определенный участок генома бактерии (Barrangou et al., 2007). Такие фрагменты называются спейсерами (от англ. spacer – промежуток), участок, где происходит встраивание, – CRISPR-кассета (от англ. Clustered Regularly Interspaced Short Palindromic Repeats), а сам процесс приобретения спейсеров – ​адаптацией.

Чтобы использовать спейсеры в борьбе с фаговой инфекцией, в клетке должен происходить еще один процесс, управляемый белками Cas, названный интерференцией. Суть его в том, что в ходе транскрипции CRISPR-кассеты образуется длинная молекула РНК, которая разрезается белками Cas на короткие фрагменты – защитные криспрРНК (крРНК), каждая из которых содержит один спейсер. Белки Cas вместе с молекулой крРНК образуют эффекторный комплекс, который сканирует всю ДНК клетки на наличие последовательностей, идентичных спейсеру (протоспейсеров). Найденные протоспейсеры расщепляются белками Cas (Westra et al., 2012; Jinek et al., 2012).

Системы CRISPR-Cas обнаружены у большинства прокариот – бактерий и архей. Хотя общий принцип действия всех известных систем CRISPR-Cas одинаков, механизмы их работы могут существенно отличаться в деталях. Наибольшие различия проявляются в строе­нии и функционировании эффекторного комплекса, в связи с чем системы CRISPR-Cas делят на несколько типов. На сегодняшний день описаны шесть типов таких неродственных друг другу систем (Makarova et al., 2015; Shmakov et al., 2015).

Наиболее изученной является система CRISPR-Cas I типа, которой обладает излюбленный объект молекулярно-биологических исследований – бактерия кишечная палочка (Esсherichia coli). Эффекторный комплекс в этой системе состоит из нескольких небольших белков Cas, каждый из которых отвечает за разные функции: разрезание длинной некодирующей CRISPR РНК, связывание коротких крРНК, поиск, а затем разрезание ДНК-мишени.

В системах II типа эффекторный комплекс образован единственным большим белком Cas9, который в одиночку справляется со всеми задачами. Именно простота и относительная компактность таких систем послужили основой для разработки технологии редактирования ДНК. Согласно этому методу, в клетки эукариот (например, человека) доставляют бактериальный белок Сas9 и крРНК, которую называют гидовой (гРНК). Вместо спейсера вирусного происхождения такая гРНК содержит целевую последовательность, соответствующую интересному для исследователя участку генома, например, где есть мутация, вызывающая какую-то болезнь. Получить же гРНК «на любой вкус» совсем несложно.

Эффекторный комплекс Cas9-гРНК вносит двуцепочечный разрыв в последовательность ДНК, точно соответствующую «гидовой» РНК. Если вместе с Cas9 и гРНК внести в клетку и последовательность ДНК, не содержащую мутацию, то место разрыва будет восстановлено по матрице «правильной» копии! Таким образом, используя разные гРНК, можно исправлять нежелательные мутации или вводить направленные изменения в гены-мишени. Высокая точность программируемого узнавания мишеней комплексом Cas9-гРНК и простота метода привели к лавинообразному росту работ по редактированию геномов клеток животных и растений (Jiang & Marraffini, 2015).

Способы проникновения бактерий

Пути проникновения бактерий в организм человека те же, что и у вирусов:

  • воздушно-капельным путем;
  • с зараженной водой, продуктами питания;
  • через раны на коже;
  • путем тесного контакта между людьми (половая близость, поцелуи);
  • через хирургические инструменты, используемыми с нарушением стерилизации;
  • через грязные руки.
Способы проникновения бактерий

После проникновения бактерий внутрь организма человека, наступает период размножения и активации. Этот период называется инкубационным. Для разного вида микробов он различен и длится от нескольких часов до года и даже более.

Сравнение размеров вирусов и бактерий

Бактерии и вирусы – это микроскопические организмы, которые могут вызывать болезни у животных и человека. Хотя эти микробы могут иметь некоторые общие характеристики, они также очень различны. Бактерии обычно намного крупнее вирусов, и их можно рассматривать под световым микроскопом. Вирусы во много раз меньше бактерий и видны только под электронным микроскопом.

Бактерии – это одноклеточные организмы, которые размножаются бесполым путем независимо от других организмов. Для размножения вирусам требуется помощь живой клетки.

Читайте также:  Можно ли делать прививку АКДС при насморке если режутся зубки?

Где они живут

Бактерии: бактерии живут практически везде, в том числе внутри других организмов, на других организмах и на неорганических поверхностях. Они заражают эукариотические организмы, такие как животные, растения и грибы.

Некоторые бактерии считаются экстремофилами и могут выживать в чрезвычайно суровых условиях, таких как гидротермальные источники, а также в желудках животных и людей.

Вирусы: подобно бактериям, вирусы можно обнаружить практически в любой среде. Это патогены, которые заражают прокариотические и эукариотические организмы, включая животных, растения, бактерии и археи (одноклеточные).

Вирусы, которые заражают экстремофилов, таких как археи, имеют генетическую адаптацию, которая позволяет им выживать в суровых условиях окружающей среды (гидротермальные источники, серные воды и т. д).

Вирусы могут сохраняться на поверхностях и на объектах, которые мы используем каждый день в течение различных отрезков времени (от секунд до лет) в зависимости от типа вируса.

Бактериальная и вирусная структура

Бактерии – это прокариотические клетки, которые проявляют все характеристики живых организмов. Бактериальные клетки содержат органеллы и ДНК, которые погружены в цитоплазму и окружены клеточной стенкой.

Эти органеллы выполняют жизненно важные функции, которые позволяют бактериям получать энергию из окружающей среды и размножаться.

Вирусы: вирусы не считаются клетками, но существуют как частицы нуклеиновой кислоты (ДНК или РНК), заключенные в белковую оболочку.

Некоторые вирусы имеют дополнительную мембрану, называемую оболочкой, которая состоит из фосфолипидов и белков, полученных из клеточной мембраны ранее инфицированной клетки-хозяина.

Эта оболочка помогает вирусу проникнуть в новую клетку путем слияния с клеточной мембраной и помогает ему выйти из нее путем почкования. Также известные как вирионы, вирусные частицы существуют где-то между живыми и неживыми организмами.

Сравнение размеров вирусов и бактерий

Хотя они содержат генетический материал, у них нет клеточной стенки или органелл, необходимых для производства энергии и размножения. Вирусы полагаются исключительно на хозяина для репликации.

Размер и форма

Бактерии: бактерии могут быть найдены в различных формах и размерах. Распространенные формы бактериальных клеток включают кокки (сферические), бациллы (палочковидные), спирали и вибрионы.

Размер бактерий обычно колеблется в пределах 200 -1000 нанометров (nm, нанометр – это 1 миллиардная часть метра, 10-9 метра) в диаметре. Самые крупные бактериальные клетки видны невооруженным глазом.

Для примера: Один нанометр равен 10 ангстрем. Расстояние между атомами углерода в алмазе равно 0,154 нм. Длины волн видимого света, воспринимаемого человеком, лежат в диапазоне 380—760 нм. Диаметр атома гелия составляет около 0,06 нм, а диаметр рибосомы – около 20 нм.

Читайте также:  Как бактерии попадают в анализ мочи и чем опасна бактериурия

Микрометр (µm или мкм) – равен одной миллионной доле метра (10−6 метра или 10−3 миллиметра). Диаметр эритроцита составляет 7 мкм, толщина человеческого волоса от 40 до 120 мкм, 3–8 мкм – толщина паутины, 70 – 180 мкм – толщина бумаги

Считающаяся самой крупной в мире бактерией, Thiomargarita namibiensis может достигать размера в 750 000 нанометров (0,75 миллиметра) в диаметре.

Вирусы: размер и форма вирусов определяются количеством нуклеиновых кислот и белков, которые они содержат. Вирусы, как правило, имеют сферическую (полиэдрическую), палочковидную или спиральную форму.

Некоторые вирусы, такие как бактериофаги, имеют сложную форму, которая включает в себя добавление белкового хвоста, прикрепленного к капсиду с хвостовыми волокнами, отходящими от хвоста.

Вирусы гораздо меньше бактерий. Обычно их размеры варьируются от 20 до 400 нанометров в диаметре. Самые крупные известные вирусы, пандоравирусы, имеют размер около 1000 нанометров или полный микрометр.

На видео ниже можно посмотреть сравнение размеров различных микроорганизмов, клеток и вирусов.

Микроорганизмы настолько малы по сравнению с людьми, что у вас может возникнуть соблазн думать, что они примерно одного размера.

Как показывает это видео, это совсем не так. Риновирус и вирус полиомиелита имеют размер 0,03 микрона (мкм), эритроцит – 8 мкм, нейрон – 100 мкм и яйцо лягушки – 1 мм. Это диапазон в 5 порядков, примерно такой же разницы, как рост человека и толщина атмосферы Земли.

, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Палочки

По классификации микроорганизмов к этой группе принадлежат бактерии, бациллы, клостридии. Обычный размер – 1-6 мкм длиной, 0,5-2 мкм шириной. Палочки-бактерии спор не формируют. Известны опасные формы: кишечная, туберкулезная, дифтерийная и прочие. Бациллы, клостридии – микробы, создающие споры. Они провоцируют разнообразные опасные (даже смертельные) инфекции: сибирская язва, сенная лихорадка, столбняк.

Выделяют короткие палочки, длинные, а также с разными концами: круглыми, острыми. Описание морфологии микроорганизмов предполагает изучение взаимного расположения. Этот параметр стал основой разделения на три группы:

  • попарное расположение;
  • бессистемные;
  • стрептобациллы, стрептобактерии.

Первые провоцируют пневмонию, вторая группа вызывает очень большой спектр болезней, а третья – сибирскую язву, мягкий шанкр.

Реже можно наблюдать бактерии, на концах которых есть утолщение, напоминающее формой булаву. Действующая классификация микроорганизмов предполагает отнесение их к палочкам. Отличительная особенность этой группы – палочка может спровоцировать дифтерию, а ряд подвидов – лепру, туберкулёз.